The pion transition form factor from lattice QCD

Antoine Gérardin

In collaboration with Harvey Meyer and Andreas Nyffeler

Based on [Phys. Rev. D 94, 074507 (2016)]

Institut für Kernphysik, Johannes Gutenberg-Universität Mainz

First Workshop of the Muon g-2 Theory Initiative - Fermilab - June 5, 2017

Motivations

The $\pi^0\to\gamma^*\gamma^*$ transition form factor describe the interaction between a neutral pion and two off-shell photons

- ullet The pion transition form factor $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(Q_1^2,Q_2^2)$ yields important insights into the dynamics of QCD
 - ightarrow Chiral anomaly
 - → Brodsky-Lepage behaviour, pion distribution amplitude
 - \rightarrow Test the operator product expansion (OPE) in the doubly-virtual case
- Hadronic light-by-light contribution to the $(g-2)_{\mu}$
 - → pion-pole contribution (dominant contribution)

Frequent estimates :

$$a_{\mu}^{\mathrm{HLbL}}(\pi^{0}) \approx 63.0 \times 10^{-11}$$

 $a_{\mu}^{\mathrm{HLbL}}(\eta) \approx 14.5 \times 10^{-11}$
 $a_{\mu}^{\mathrm{HLbL}}(\eta') \approx 12.5 \times 10^{-11}$

Motivations : the pion-pole contribution

[Jegerlehner & Nyffeler '09]

$$a_{\mu}^{\mathrm{HLbL};\pi^{0}} = \left(\frac{\alpha_{e}}{\pi}\right)^{3} \left(a_{\mu}^{\mathrm{HLbL};\pi^{0}(1)} + a_{\mu}^{\mathrm{HLbL};\pi^{0}(2)}\right)$$

 $\approx \frac{\pi^{0}, \eta, \eta'}{\pi^{0}, \eta, \eta'} + \cdot$

where
$$(\tau = \cos(\theta), Q_1 \cdot Q_2 = Q_1 Q_2 \cos(\theta))$$

$$\begin{split} a_{\mu}^{\mathrm{HLbL};\pi^{0}(1)} &= \int_{0}^{\infty} \!\! dQ_{1} \! \int_{0}^{\infty} \!\! dQ_{2} \! \int_{-1}^{1} \!\! d\tau \ \, \boldsymbol{w}_{1}(Q_{1},Q_{2},\tau) \ \, \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2},-(Q_{1}+Q_{2})^{2}) \ \, \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{2}^{2},0) \, , \\ a_{\mu}^{\mathrm{HLbL};\pi^{0}(2)} &= \int_{0}^{\infty} \!\! dQ_{1} \! \int_{0}^{\infty} \!\! dQ_{2} \! \int_{-1}^{1} \!\! d\tau \ \, \boldsymbol{w}_{2}(Q_{1},Q_{2},\tau) \ \, \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2},-Q_{2}^{2}) \ \, \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-(Q_{1}+Q_{2})^{2},0) \, . \end{split}$$

- ightarrow Product of one single-virtual and one double-virtual transition form factors
- $\rightarrow w_{1,2}(Q_1,Q_2, au)$ are model-independent weight functions
- \rightarrow Weight functions are concentrated at small momenta below 1 GeV (here for $\tau=-0.5$)

Theoretical constraints on $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(-Q_1^2,-Q_2^2)$

• Adler-Bell-Jackiw (ABJ) anomaly :

- \hookrightarrow Low virtualities $\left(Q_1^2 \to 0, \ Q_2^2 \to 0\right)$
- \hookrightarrow Chiral limit

$$\mathcal{F}_{\pi^0 \gamma^* \gamma^*}(0,0) = \frac{1}{4\pi^2 F_\pi}$$

• Brodsky-Lepage behavior :

- \hookrightarrow Single-virtual form factor
- \hookrightarrow Off-shell photon : $Q^2\to\infty$

$$\mathcal{F}_{\pi^0\gamma^*\gamma}(-Q^2,0) \xrightarrow[Q^2\to\infty]{} \frac{2F_\pi}{Q^2}$$

- ▶ The pre-factor depends on the shape on the pion distribution amplitude
- $ightharpoonup \alpha_s$ corrections

• OPE prediction:

- \hookrightarrow Double-virtual form factor
- \hookrightarrow Large virtualities : $Q^2 \to \infty$

$$\mathcal{F}_{\pi^0\gamma^*\gamma}(-Q^2, -Q^2) \xrightarrow[Q^2 \to \infty]{} \frac{2F_\pi}{3Q^2}$$

▶ Higher-twist matrix element in the OPE are known : $\frac{2F_{\pi}}{3Q^2}\left[1-\frac{8}{9}\frac{\delta^2}{Q^2}+\mathcal{O}\left(\frac{1}{Q^4}\right)\right]$

Experimental status

• Decay width : $\Gamma_{\pi^0\gamma\gamma}=7.82(22)~{\rm eV}~\sim 3\%$ [PrimEx '10]

$$\Gamma_{\pi^0\gamma\gamma} = \frac{\pi\alpha_e^2 m_\pi^3}{4} \mathcal{F}_{\pi^0\gamma^*\gamma^*}(0,0)$$

- → Consistent with current theoretical predictions
- \rightarrow Experimental test of the chiral anomaly
- The single-virtual form factor has been measured (CELLO, CLEO, BaBar, Belle)

$$\mathcal{F}_{\pi^0 \gamma^* \gamma^*}(-Q^2, 0) = F(Q^2)$$

- \rightarrow Belle data seem to confirm the Brodsky-Lepage behavior $\sim 1/Q^2.$
- ightarrow Belle and Babar results are quite different
- \rightarrow no measurement at low $Q < 0.8 \; \mathrm{GeV}$ (dominant contribution)
- No result yet for the double-virtual form factor
 - \hookrightarrow but measurement planned at BESIII

Motivations

To estimate the pion pole contribution we need :

- The single and double virtual transition form factor for arbitrary space-like virtualities
- In the kinematical range $Q^2 \in [0-2] \text{ GeV}^2$ (non-perturbative regime of QCD)

BUT

- Experiments give information on the single-virtual form factor only
- Experimental data are available only for relatively large virtualities $Q^2>0.6~{\rm GeV^2}$
- The theory imposes strong constraints for the normalisation and the asymptotic behavior of the TFF
- → Most evaluations of the pion-pole contribution are therefore based on phenomenological models
- Systematic errors are difficult to estimate

Lattice QCD is particularly well suited to compute the form factor in the energy range relevant to q-2!

Lattice computation

Lattice calculation

In Minkowski space-time :

$$\epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \mathcal{F}_{\pi^0\gamma\gamma}(q_1^2, q_2^2) = i \int d^4x \, e^{iq_1x} \langle \Omega | T\{J_{\mu}(x)J_{\nu}(0)\} | \pi^0(p) \rangle = M_{\mu\nu}(q_1^2, q_2^2)$$

• $J_{\mu}(x)$ hadronic component of the electromagnetic current : $J_{\mu}(x) = \frac{2}{3}\overline{u}(x)\gamma_{\mu}u(x) - \frac{1}{3}\overline{d}(x)\gamma_{\mu}d(x) + \dots$

In Euclidean space-time : [Ji & Jung '01] [Cohen et al. '08] [Feng et al. '12]

$$M_{\mu\nu}^{E}(q_{1}^{2}, q_{2}^{2}) = -\int d\tau \, e^{\omega_{1}\tau} \int d^{3}z \, e^{-i\vec{q}_{1}\vec{z}} \langle 0|T \left\{ J_{\mu}(\vec{z}, \tau)J_{\nu}(\vec{0}, 0) \right\} |\pi(p)\rangle$$

- Analytical continuation (" $\tau = -i t$ ")
- We must kept $q_{1,2}^2 < M_V^2 = \min(M_\rho^2, 4m_\pi^2)$ to avoid poles
- $\bullet \ q_1 = (\boldsymbol{\omega_1}, \vec{q_1})$

The main object to compute is the Euclidean three-point correlation function :

$$C_{\mu\nu}^{(3)}(\tau, t_{\pi}; \vec{p}, \vec{q}_{1}, \vec{q}_{2}) = \sum_{\vec{x}, \vec{z}} \left\langle T \left\{ J_{\nu}(\vec{0}, t_{f}) J_{\mu}(\vec{z}, t_{i}) P(\vec{x}, t_{0}) \right\} \right\rangle e^{i\vec{p}\vec{x}} e^{-i\vec{q}_{1}\vec{z}}$$

ullet We use one local (Z_V computed non perturbatively) and one conserved vector current

Lattice QCD

- ▶ Lattice QCD is not a model : specific regularisation of the theory adapted to numerical simulations
- ▶ However there are systematic errors that we need to understand :
 - 1) Finite lattice spacing: discretisation errors
 - \rightarrow 3 lattice spacings (a = 0.075, 0.065, 0.048 fm)
 - \rightarrow Extrapolation to a=0
 - 2) Unphysical quark masses
 - → Different simulations with different pion mass in the range [190:440] MeV
 - ightarrow Extrapolation to $m_{\pi}=m_{\pi}^{
 m exp}$
 - 3) Finite volume
 - \rightarrow Periodic boundary conditions in space, volume effects are $\mathcal{O}(e^{-m_\pi L})$, we use $m_\pi L > 4$
 - \rightarrow Discrete spatial momenta $\vec{p}=2\pi/L\vec{n}$
 - \rightarrow We average over all possible photons spatial momenta $\vec{q_1}$ and $\vec{q_2}$ to increase the statistic

Kinematic reach in the photon virtualities

Photons virtualities:

$$q_1^2 = \omega_1^2 - |\vec{q}_1|^2$$

$$q_2^2 = (m_\pi - \omega_1)^2 - |\vec{q}_1|^2$$

$$\Rightarrow |\vec{q}_1|^2 = (2\pi/L)^2 |\vec{n}|^2 , |\vec{n}|^2 = 1, 2, 3, 4, 5, \dots$$

 $\Rightarrow \omega_1$ is a (real) free parameter

Figure: L/a = 48 at a = 0.065 fm.

Figure: L/a = 64 at a = 0.048 fm.

Results

Shape of the integrand for F7 $(a=0.065~{ m fm}$ and $m_\pi=270~{ m MeV})$

$$\mathcal{F}_{\pi^{0}\gamma\gamma}(q_{1}^{2}, q_{2}^{2}) \propto \frac{2E_{\pi}}{Z_{\pi}} \int_{-\infty}^{\infty} d\tau \, \widetilde{A}_{\mu\nu}(\tau) \, e^{\omega_{1}\tau}$$

$$\mathcal{A}_{\mu\nu}(\tau) = \lim_{t_{\pi} \to \infty} C_{\mu\nu}(\tau, t_{\pi}) e^{E_{\pi}t_{\pi}}$$

$$\widetilde{A}_{\mu\nu}(\tau) = \begin{cases} A_{\mu\nu}(\tau) & \tau > 0 \\ A_{\mu\nu}(\tau) \, e^{-E_{\pi}\tau} & \tau < 0 \end{cases}$$

On the lattice:

- Discrete sum over lattice points :

$$\int d\tau \to a \sum_{\tau}$$

- Finite size of the box :

$$|\tau| <= \tau_{\rm max} \neq \infty$$

Shape of the integrand for F7 $(a=0.065~{ m fm}$ and $m_\pi=270~{ m MeV})$

ullet The vector meson dominance (VMD) model is expected to give a good description of the data at large au

$$\mathcal{F}^{\text{VMD}}_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = \frac{\alpha M_V^4}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)} \rightarrow \widetilde{A}(\tau) = \dots \text{ (known analytical expression)}$$

 \bullet Fit the data at large τ and use the result of the fit for $\tau > \tau_c \gtrsim 1.3~\mathrm{fm}$

 Check the dependance on the model using LMD rather than VMD:

$$\mathcal{F}^{\mathrm{LMD}}_{\pi^0 \gamma^* \gamma^*}(q_1^2, q_2^2) = \frac{\alpha M_V^4 + \beta (q_1^2 + q_2^2)}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

• The difference between the two models is included in the systematic error.

Transition form factor: results

- ▶ Results for one of the eight ensembles with $a=0.048~\mathrm{fm}$ and $m_\pi=270~\mathrm{MeV}$
- ▶ We have access to the single and double-virtual form factor. Two special cases
 - ightarrow doubly-virtual form factor with $Q_1^2=Q_2^2$

Contrary to the experimental case, the single virtual TFF is more challenging on the lattice

Disconnected contributions

- Disconnected contributions are known to be much more challenging on the lattice
- Computed on E5 only ($a=0.065~\mathrm{fm},\,m_\pi=440~\mathrm{MeV}$)
- Loops: 75 stochastic sources with full-time dilution and a generalised Hopping Parameter Expansion.
- Two-point functions: 7 stochastic sources with full-time dilution

- \rightarrow The disconnected contribution is below 1%
- \rightarrow But the pion mass dependence could be large ...

Continuum and chiral extrapolation

- lacktriangle Lattice results are necessary obtained at finite lattice spacing $a \neq 0$
- ▶ Our simulations are also performed at unphysical quark masses
- → Use phenomenological models to describe our data, then extrapolate to the continuum and chiral limit
- VMD model

$$\mathcal{F}_{\pi^0 \gamma^* \gamma^*}^{\text{VMD}}(q_1^2, q_2^2) = \frac{\alpha M_V^4}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

- Reproduces the anomaly constraint with $\alpha = 1/4\pi^2 F_{\pi}$
- ullet And the Brodsky-Lepage in the single-virtual case : $\mathcal{F}^{\mathrm{VMD}}_{\pi^0\gamma^*\gamma^*}(-Q^2,0)=\alpha M_V^2/Q^2$
- But it fails to reproduces the OPE prediction in the double-virtual case

$$\mathcal{F}^{\text{VMD}}_{\pi^0 \gamma^* \gamma^*}(-Q^2, -Q^2) = \alpha M_V^4 / Q^4 \quad , \quad \mathcal{F}^{\text{OPE}}_{\pi^0 \gamma^* \gamma^*}(-Q^2, -Q^2) \sim 2F_{\pi}/(3Q^2)$$

Continuum and chiral extrapolation

- ▶ Lattice results are necessary obtained at finite lattice spacing $a \neq 0$
- ▶ Our simulations are also performed at unphysical quark masses
- → Use phenomenological models to describe our data, then extrapolate to the continuum and chiral limit
- VMD model

$$\mathcal{F}_{\pi^0 \gamma^* \gamma^*}^{\text{VMD}}(q_1^2, q_2^2) = \frac{\alpha M_V^4}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

- LMD model (Lowest Meson Dominance) [Moussallam '94] [Knecht et al. '99]

$$\mathcal{F}_{\pi^0 \gamma^* \gamma^*}^{\text{LMD}}(q_1^2, q_2^2) = \frac{\alpha M_V^4 + \beta (q_1^2 + q_2^2)}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

- ullet Inspired from the large- N_C approximation to QCD
- Reproduces the anomaly constraint with $\alpha = 1/4\pi^2 F_{\pi}$
- ullet Compatible with the OPE prediction in the double-virtual case with $eta=-F_\pi/3$
- But this model is not compatible with the Brodsky-Lepage behavior in the single virtual case

$$\mathcal{F}^{\rm LMD}_{\pi^0 \gamma^* \gamma^*}(-Q^2,0) = -\beta/M_V^2 \quad , \quad \mathcal{F}^{\rm BL}_{\pi^0 \gamma^* \gamma^*}(-Q^2,-Q^2) \sim 1/Q^2$$

Continuum and chiral extrapolation

- lackbox Lattice results are necessary obtained at finite lattice spacing $a \neq 0$
- ➤ Our simulations are also performed at unphysical quark masses
- → Use phenomenological models to describe our data, then extrapolate to the continuum and chiral limit
- VMD model

$$\mathcal{F}_{\pi^0 \gamma^* \gamma^*}^{\text{VMD}}(q_1^2, q_2^2) = \frac{\alpha M_V^4}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

- LMD model (Lowest Meson Dominance) [Moussallam '94] [Knecht et al. '99]

$$\mathcal{F}_{\pi^0 \gamma^* \gamma^*}^{\text{LMD}}(q_1^2, q_2^2) = \frac{\alpha M_V^4 + \beta (q_1^2 + q_2^2)}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

- LMD+V model [Knecht & Nyffeler '01]

$$\mathcal{F}_{\pi^0 \gamma^* \gamma^*}^{\text{LMD+V}}(q_1^2, q_2^2) = \frac{\widetilde{h}_0 \, q_1^2 q_2^2 (q_1^2 + q_2^2) + \widetilde{h}_1 (q_1^2 + q_2^2)^2 + \widetilde{h}_2 \, q_1^2 q_2^2 + \widetilde{h}_5 \, M_{V_1}^2 M_{V_2}^2 \, (q_1^2 + q_2^2) + \alpha \, M_{V_1}^4 M_{V_2}^4}{(M_{V_1}^2 - q_1^2)(M_{V_2}^2 - q_1^2)(M_{V_1}^2 - q_2^2)(M_{V_2}^2 - q_2^2)}$$

- Refinement of the LMD model (includes a second vector resonance, $\rho':M_{V_2}$)
- ullet All the theoretical constraints are satisfied (if one sets $\widetilde{h}_1=0$)
- Many more fit parameters

Comparison with phenomenological models: VMD

$$\mathcal{F}^{\text{VMD}}_{\pi^0 \gamma^* \gamma^*}(q_1^2, q_2^2) = \frac{\alpha M_V^4}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

- $\hookrightarrow \alpha$ and M_V are fit parameters
- → Global fit (8 ensembles + chiral and continuum extrapolation)
- \hookrightarrow The model fails to describe our data! ($\alpha = 0.243(18)~{\rm GeV}^{-1} \neq \alpha_{\rm th} = 0.274~{\rm GeV}^{-1}$)
- \hookrightarrow The wrong asymptotic behavior of this model (double virtual case) already matters at $Q^2 \sim 1-2~{
 m GeV}^2$

Comparison with phenomenological models: LMD

$$\mathcal{F}_{\pi^0 \gamma^* \gamma^*}^{\text{LMD}}(q_1^2, q_2^2) = \frac{\alpha M_V^4 + \beta (q_1^2 + q_2^2)}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

- α , β and M_V are fit parameters
- The model gives a good description of our data
- $\alpha^{\rm LMD}$ is compatible with the theoretical prediction $\alpha^{\rm th} = 1/(4\pi^2 F_\pi) = 0.274~{\rm GeV}^{-1}$ \rightarrow (accuracy 7%)
- ullet $eta^{
 m LMD}$ is compatible with the OPE prediction $eta^{
 m OPE} = -F_\pi/3 = -0.0308~{
 m GeV}$

Comparison with phenomenological models : LMD+V

$$\mathcal{F}^{\mathrm{LMD+V}}_{\pi^0\gamma^*\gamma^*}(q_1^2,q_2^2) = \frac{\widetilde{h}_0\,q_1^2q_2^2(q_1^2+q_2^2) + \widetilde{h}_2\,q_1^2q_2^2 + \widetilde{h}_5\,M_{V_1}^2\,M_{V_2}^2\,(q_1^2+q_2^2) + \alpha\,M_{V_1}^4M_{V_2}^4}{(M_{V_1}^2-q_1^2)(M_{V_2}^2-q_1^2)(M_{V_1}^2-q_2^2)(M_{V_2}^2-q_2^2)}$$

- Assumptions:
- $M_{V_1}=m_{
 ho}^{
 m exp}=0.775~{
 m GeV}$ in the continuum and chiral limit (but chiral corrections are taken into account in the fit)
- Constant shift in the spectrum: $M_{V_2}(\widetilde{y}) = m_{\rho'}^{\rm exp} + M_{V_1}(\widetilde{y}) m_{\rho}^{\rm exp}$

Results

Comparison with phenomenological models : LMD+V

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}^{\text{LMD+V}}(q_1^2, q_2^2) = \frac{\widetilde{h}_0 \, q_1^2 q_2^2 (q_1^2 + q_2^2) + \widetilde{h}_2 \, q_1^2 q_2^2 + \widetilde{h}_5 \, M_{V_1}^2 M_{V_2}^2 (q_1^2 + q_2^2) + \alpha \, M_{V_1}^4 M_{V_2}^4}{(M_{V_1}^2 - q_1^2)(M_{V_2}^2 - q_1^2)(M_{V_1}^2 - q_2^2)(M_{V_2}^2 - q_2^2)}$$

0.16

• The data are well describe by this model (same $\chi^2/\text{d.o.f.}$ as for the LMD model)

0.12

- $\alpha^{\rm LMD+V}$ compatible with the theoretical prediction $\alpha^{\rm th}=0.274~{\rm GeV^{-1}}$ (statistical accuracy 9%)
- Fit to CLEO data (single-virtual form factor) : $\widetilde{h}_5 = -0.166(6)~{\rm GeV}$
- ullet \widetilde{h}_2 can be fixed by comparing with the subleading term in the OPE [Nesterenko et al '83]

$$\mathcal{F}_{\pi^0 \gamma^* \gamma^*}(-Q^2, -Q^2) \xrightarrow[Q^2 \to \infty]{} \frac{2F_{\pi}}{3} \left[\frac{1}{Q^2} - \frac{8}{9} \frac{\delta^2}{Q^4} + \mathcal{O}\left(\frac{1}{Q^6}\right) \right]$$

- QCD sum rules : $\delta^2 = 0.20(2)~{\rm GeV}^2$ [Novikov et al '84] $\rightarrow \widetilde{h}_2 = 0.327~{\rm GeV}^3$

0.12

Final results for the form factor (at the physical point)

LMD+V model:

$$\alpha^{\rm LMD+V} = 0.273(24)(7)~{\rm GeV}^{-1}~, \quad \widetilde{h}_2 = 0.345(167)(83)~{\rm GeV}^3~, \quad \widetilde{h}_5 = -0.195(70)(34)~{\rm GeV}$$

$$\rightarrow {\rm where}~\widetilde{h}_0 = -F_\pi/3 = -0.0308~{\rm GeV},~M_{V_1} = 0.775~{\rm GeV}~{\rm and}~M_{V_2} = 1.465~{\rm GeV}$$
 are fixed at the physical point.

Back to phenomenology: the pion-pole contribution

& Nyffeler '09]
$$a_{\mu}^{\mathrm{HLbL};\pi^{0}} = \left(\frac{\alpha_{e}}{\pi}\right)^{3} \left(a_{\mu}^{\mathrm{HLbL};\pi^{0}(1)} + a_{\mu}^{\mathrm{HLbL};\pi^{0}(2)}\right)$$

$$\begin{split} a_{\mu}^{\mathrm{HLbL};\pi^{0}(1)} &= \int_{0}^{\infty} \!\! dQ_{1} \! \int_{0}^{\infty} \!\! dQ_{2} \! \int_{-1}^{1} \!\! d\tau \ w_{1}(Q_{1},Q_{2},\tau) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2},-(Q_{1}+Q_{2})^{2}) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{2}^{2},0) \\ a_{\mu}^{\mathrm{HLbL};\pi^{0}(2)} &= \int_{0}^{\infty} \!\! dQ_{1} \! \int_{0}^{\infty} \!\! dQ_{2} \! \int_{-1}^{1} \!\! d\tau \ w_{2}(Q_{1},Q_{2},\tau) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2},-Q_{2}^{2}) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-(Q_{1}+Q_{2})^{2},0) \end{split}$$

- $\rightarrow w_{1,2}(Q_1,Q_2,\tau)$ are some model-independent weight functions (concentrated at small momenta below 1 GeV)
- \rightarrow The form factor has been extrapolated to the continuum and chiral limit

$$a_{\mu;\text{LMD+V}}^{\text{HLbL};\pi^0} = (65.0 \pm 8.3) \times 10^{-11}$$

 \rightarrow most model calculations yield results in the range

$$a_{\mu}^{\mathrm{HLbL};\pi^0} = (50 - 80) \times 10^{-11}$$

Model	$a_{\mu}^{\mathrm{HLbL};\pi^0} \times 10^{11}$
LMD (this work)	68.2(7.4)
LMD+V (this work)	65.0(8.3)
VMD (theory)	57.0
LMD (theory)	73.7
LMD+V (theory + phenomenology)	62.9

Λ [GeV]		LMD		LMD+V	
0.25	14.6	(21.4%)	14.4	(22.1%)	
0.5	37.9	(55.5%)	37.2	(57.2%)	
0.75	50.7	(74.4%)	49.5	(76.1%)	
1.0	57.3	(84.0%)	55.5	(85.4%)	
1.5	62.9	(92.3%)	60.6	(93.1%)	
2.0	65.1	(95.5%)	62.5	(96.1%)	
5.0	67.7	(99.2%)	64.6	(99.4%)	
20.0	68.2	(100%)	65.0	(100%)	

Conclusion

Perspectives

- Use $N_f = 2 + 1$ gauge configuration
 - \rightarrow dynamical strange quark
 - → CLS configuration with open boundary conditions
- Include a new kinematical configuration where the pion has one unit of momentum
 - \rightarrow allow to probe larger kinematical range
- Using Wilson-Clover fermions, discretisation errors are $\mathcal{O}(a)$.
 - \rightarrow Implement full $\mathcal{O}(a)$ -improvement to reduce discretization effects
 - \rightarrow Requires the $\mathcal{O}(a)$ -improvement of the vector current on the lattice

Conclusion

- We have performed a lattice calculation of the pion transition form factor $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(q_1^2,q_2^2)$ with two dynamical quarks and in the momentum region relevant for the $(g-2)_{\mu}$.
- The VMD model fails to describe our data, especially in the double virtual case.
- However, the LMD and LMD+V models describe our data successfully.
- In particular we recover the anomaly results ($\alpha^{\rm th} = 0.274~{\rm GeV}^{-1}$) in the continuum and chiral limit

$$\alpha^{\text{LMD}} = 0.275(18)(3) \text{ GeV}^{-1}$$
 , $\alpha^{\text{LMD+V}} = 0.273(24)(7) \text{ GeV}^{-1}$

- $\rightarrow 7-9\%$ accuracy
- Disconnected contributions have been computed on one lattice ensemble.
- Provides a first lattice estimate of the pion-pole contribution to the hadronic light-by-light scattering in the q-2 of the muon

$$a_{\mu;\text{LMD+V}}^{\text{HLbL};\pi^0} = (65.0 \pm 8.3) \times 10^{-11}$$

23